
Towards a calibration of the length-scale equation

St�ephane Catris, Bertrand Aupoix *

ONERA, Department for Models in Aerodynamics and Energetics, 2 Avenue Edouard Belin, B.P. 4025, 31055 Toulouse Cedex 4, France

Abstract

A complete set of constraints is proposed to force a high Reynolds number turbulence model to correctly predict the behaviour of

the outer part of the boundary layer, whatever the pressure gradient and the Reynolds number. The constraints are general and are

presently applied to a two-equation model, using the Boussinesq hypothesis together with new forms of the inhomogeneous terms in

the length and velocity scale transport equations. No classical turbulence model satis®es all the constraints. A prototype model,

which satis®es all the constraints, is shown to yield fair predictions. Ó 2000 Begell House Inc. Published by Elsevier Science Inc.

All rights reserved.
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1. Introduction

Failures with turbulence models are often blamed upon the
prediction of the turbulence length scale. Two strategies are
commonly used to derive the length-scale transport equation.
A variable linked to the small scales, such as the dissipation e
which appears in the turbulent kinetic energy equation or the
speci®c dissipation rate x can be used. However, their exact
transport equation, derived from the Navier±Stokes equation,
is of little use as it contains terms which blow up as the
Reynolds number tends towards in®nity. Transport equations
for a large scale related variable such as the turbulence length
scale (Rotta, 1951; Lin and Wolfshtein, 1980; Smith, 1995) or
time scale (Zeierman and Wolfshtein, 1986) can be modelled in
a term-by-term approach.

Having an `exact' length scale is of little use if the results are
wrong because of other drawbacks in the model, e.g. the ve-
locity scale or the constitutive relation. Therefore, another
strategy is proposed. A general form for the length-scale
equation, which involves little physics, is ®rst proposed. A
global optimization of the model is performed by ®rst identi-
fying physical behaviours the model has to reproduce in order
to provide fair predictions. These behaviours are then ex-
pressed as mathematical constraints. The pertinence of the
mathematical constraint form is checked for standard turbu-
lence models. At last, the set of constraints is used to derive a
new model.

The present work is restricted to eddy viscosity models for
incompressible ¯ows. As the near-wall region usually requires

special treatments, only the high Reynolds number part of the
model is addressed here.

2. Proposed model form

With the Boussinesq assumption, the rôle of turbulence
models is to determine the eddy viscosity, i.e. mainly to eval-
uate a turbulence velocity scale and a turbulence length scale.
The turbulent kinetic energy transport equation, derived from
the Navier±Stokes equation, requires little modelling and can
provide the velocity scale.

For homogeneous ¯ows, the turbulent kinetic energy
transport equation requires no modelling,

Dk
Dt
� Pk ÿ e: �1�

The standard form of the dissipation transport equation

De
Dt
� Ce1

Pk� ÿ Ce2
e� e

k
�2�

yields predictions in good agreement with the Rogers et al.
(1986) DNS. Moreover, the transport equation for any length-
scale determining quantity / � kmen can be deduced from the
above equations and reads

D/
Dt
� C/1

Pk

ÿ ÿ C/2
e
�/

k
:

The problem is thus to model the extra terms due to inho-
mogeneity. The exact form of the turbulent kinetic energy
transport equation shows that the extra term is a divergence.
Therefore, following Onsager's tensorial representation or
Yoshizawa (1985), the turbulent kinetic energy transport
equation is modelled as
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Dk
Dt
� Pk ÿ e� div

mt

rkk
grad k

�
� mt

rk/

k
/

grad /

�
; �3�

where / � kmen is any length-scale determining variable.
In the length-scale transport equation, the di�usion ¯ux is

written in a form similar to the term in the turbulent kinetic
energy transport equation, i.e. they are two terms within the
divergence. However, there is no proof from the exact equation
that all inhomogeneous terms are of divergence form. More-
over, it is well known that when a length-scale transport
equation is expressed in terms of another length-scale deter-
mining variable, e.g. when the e equation is written in terms of
x, dot products of gradients appear. Therefore, the following
form, including all possible products, is proposed for the
length-scale equation,

D/
Dt
� C/1

Pk

ÿ ÿ C/2
e
�/

k
� div

mt

rk/

/
k

grad k
�

� mt

r//
grad /

�
� a

mt

/
grad / � grad /� b

mt

k
grad k � grad /

� c
mt/
k2

grad k � grad k: �4�

It can be easily checked that, starting from (3) and (4), the
transport equations when using another length-scale deter-
mining variable w � ka/b�b 6� 0� can be deduced. This new
equation set has the same form as (3) and (4), and the coe�-
cients (C; r; a; b; c) of the k- and w-equation can be directly
related to the ones in the previous k- and / equations. Even rkk

changes with the length-scale determining variable.
At last, the model has to be completed with the expression

for the eddy viscosity mt,

mt � Cl
k2

e
: �5�

The above model form involves many standard models such as
k±e, k±x, k±u and, to some extent, k±L models. As the set of
Eqs. (3) and (4) can be used for any length-scale determining
variable, e will be chosen from now on to express the various
constraints the model has to satisfy, for the sake of simplicity.
The general form of the constraints for the / variable can be
found in Catris (1999).

The ®nal choice of the length-scale determining variable
will be dictated by numerical stability arguments. On the one
hand, dot products of gradients may lead to numerical sti�ness
and a change of variable allows to get rid of some of them or to
avoid spurious behaviours as the length-scale determining
variable / tends towards zero. On the other hand, near-wall
treatment will favour length-scale determining variables which
have a fair behaviour in the wall region.

3. Constraints

3.1. Framework

Attention is focussed on aeronautical applications, for
which turbulence models are ®rst asked to correctly predict
wall values, i.e. skin friction and wall heat ¯ux. For high angle
of attack or high lift con®gurations, the response of the
boundary layer to a positive pressure gradient and separation
are key challenges.

The velocity pro®le for a two-dimensional boundary layer
is plotted in wall variables in Fig. 1. It must be reminded that
the skin friction coe�cient is directly related to the maximum
value since ue=us �

����������
2=Cf

p
. For a zero pressure gradient

boundary layer (ZPG), the wake is quite small and the loga-
rithmic region extends with the Reynolds number. A good
prediction of the skin friction coe�cient whatever the
Reynolds number requires that
· the near wall model provides the correct intercept for the

logarithmic region,
· the slope of the logarithmic region is correct,
· the wake is well reproduced.

For accelerated ¯ows (FPG), the wake slightly decreases so
that the above constraints nearly guarantee the correct pre-
diction of the skin friction coe�cient. For strongly accelerated
¯ows, the prediction of the relaminarization has to be provided
by the near-wall model.

For decelerated ¯ows (APG), the logarithmic region re-
mains but shrinks as the wake extends. The model has to

Nomenclature

Cf skin friction coe�cient, Cf � sw=��1=2�qU 2
e �

k turbulent kinetic energy
Pk turbulent kinetic energy production rate
u longitudinal component of the velocity vector
us friction velocity, us �

����������
sw=q

p
y distance along the wall normal

Greeks
d boundary layer thickness
e turbulent kinetic energy dissipation rate
g reduced wall distance
j von K�arm�an constant, j � 0:41
m viscosity

mt turbulent viscosity
p� dimensionless pressure gradient
q density
sw wall shear stress
u e=

���
k
p

/ length scale determining variable
x speci®c dissipation, x � e=k

Symbols
� variables in wall scaling
0 ¯uctuation
hi ensemble average
^ variable in pressure gradient scaling
e value at the boundary layer edge
w wall value

Fig. 1. Boundary layer pro®le in wall variables for various pressure

gradients.
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predict the correct slope of the logarithmic region, again in
order to provide good predictions whatever the Reynolds
number, and to reproduce the large wake region.

Therefore, good predictions of the boundary layer ¯ow
whatever the pressure gradient and the Reynolds number re-
quire, as concerns the high Reynolds number part of the
boundary layer, that both the logarithmic region and the wake
be correctly reproduced. This will provide us most of the
constraints.

3.2. Logarithmic region for a zero pressure gradient boundary
layer

For a zero pressure gradient boundary layer, the total
(laminar + turbulent) shear stress is constant in the near-wall
region. In the logarithmic region, the laminar shear stress is
negligible. Although its validity in the logarithmic region is
questionable, Bradshaw's assumption is classically used to link
the turbulent kinetic energy to the turbulent shear as
ÿhu0v0i � u2

s � 2a1k. Using wall scaling, i.e. making quantities
dimensionless with us and m, it yields k� � 1=2a1. For standard
models in which rke !1, neglecting advection yields an
equilibrium between production and dissipation in the turbu-
lent kinetic energy Eq. (3) which gives e� � 1=jy�. This
equilibrium still holds if rke is ®nite. Substituting into the
dissipation equation leads to

Ce2
ÿ Ce1

� �2a1

j2

�
ÿ a

�
ree � 1 with 2a1 �

������
Cl

p
: �6�

3.3. Logarithmic region for a boundary layer with moderate
pressure gradient

Experiments (e.g. Nagano et al., 1991) and simulations (e.g.
Spalart and Watmu� (1993)) tend to show that the slope of the
logarithmic region is unchanged in presence of moderate
pressure gradients, although the value of the intercept is al-
tered, at least in adverse pressure gradient ¯ows. The con-
straint is thus the independence of the slope of the logarithmic
layer with respect to moderate pressure gradients.

From the momentum equation, the dimensionless shear
stress now reads

ÿhu0v0i� � 1� p�y� p� � m
qu3

s

dp
dx
: �7�

Following Huang and Bradshaw (1995), all quantities are ex-
panded in terms of the small parameter p�y� as

k� � k�0 � k�1 p�y�; e� � e�0
y�
� e�1 p�; j� � j�0 � j�1 p�y�:

The analysis only holds for moderate pressure gradients i.e.
when j p�y� j� 1. Because of the form of the transport Eqs. (3)
and (4), the analysis is somewhat more tedious than in Huang
and Bradshaw. The zero pressure gradient boundary layer case
investigated above is retrieved as 0th order solution.

The ®rst-order solutions have the following form:

k�1 � 2
j0 j0 � j1� �=2a1rke ÿ 1

j2
0 1=rke � 1=rkk� � ÿ 4a1

;

e�1 �
1

j
4a1k�1
�

ÿ 1ÿ j1

j

�
; �8�

j1 � 2Ce2
�ÿ ÿ Ce1

� a� � b�rkk �ar2
ee � 2a�� � b�rkk � Ce2

�ree

� rkk�rke � 2a�� � b�Ce1
ÿ 3a� � b�Ce2

�rkkr
2
ee

� Ce1
� ÿ 2Ce2

�rkkree;

where j1 should be null to preserve the slope of the logarithmic
region.

Fig. 2 shows an example of the constraint validation. Pre-
dictions of Smith (1995) for the k±L model, Wilcox (1988) for
the k±x model, Cousteix et al. (1997) for the k±u model and
Chien (1982) for the k±e model are compared for the equilib-
rium boundary layer case investigated by Sk�are (1994). The
k±x and k±L models which yield small values of j1 fairly
reproduce the logarithmic region while the k±e or k±u models,
which yield large values, fail.

3.4. Square root region

For boundary layers submitted to strong positive pressure
gradients, Townsend (1976) has brought into evidence the
existence of a region above the logarithmic law where
p�y� � 1, i.e. where the shear stress varies linearly while the
velocity varies as the square root of the wall distance, which we
shall refer to as the square root region. The following change
of variables allows to get rid of the pressure gradient:

û � u
usp�

; ŷ � yus

mp�
; k̂ � k

u2
sp�

; ê � me
u4

sp� 2
; m̂t � mt

mp� 2
:

Eq. (7) reduces to

ÿhu0v0i� � p�y� ) m̂t

oû
oŷ
� ŷ:

Power law solutions are looked for. The variables are ex-
panded as

û � Auŷ p; k̂ � Akŷ q; ê � Aeŷ r:

Substituting these expressions into Eqs. (3)±(5), the balance of
the exponents is ful®lled when p � 1

2
; q � 1 and r � 1

2
. Any

model which is dimensionally consistent, as the classical
models and the proposed model form, satis®es the power law
relations in the square root region.

The solution reads

A2
k �

Qÿ Ce1
R

Cl Qÿ Ce2
R� � ; A2

u � Ak
Qÿ Ce1

R
Ce2
ÿ Ce1

;

Q � a
2
� bÿ 2c� 1

ree
� 3

rek
; R � 3

rkk
� 3

2rke
:

�9�

Fig. 2. Prediction of the logarithmic region by various turbulence

models for the positive pressure gradient experiment of Sk�are and

Krogstad.
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The investigated standard models cannot ®nd such a solution
since they give negative values for A2

u. This point has been
arrived at independently by Rao and Hassan (1998) for the
k±x model. Durbin and Belcher (1992) analysis for the k±e
model is erroneous as they took the wrong root to compute Au.

The real constraints are that, on the one hand, the correct
slope Au � 2=j is obtained and, moreover, that realizability is
satis®ed, i.e. Ak > 0; Ae > 0. The value for Ak should be about
1=2a1 to be in fair agreement with experiments.

The predictions of various standard models are plotted in
Fig. 3. It clearly shows that, as expected, no model reproduces
the square root region. Only the Spalart±Allmaras model
yields a fair approximation to it but not exactly the correct
behaviour (see Catris' thesis for a detailed analysis).

3.5. Behaviour at a laminar/turbulent interface

At the edge of a turbulent region, the model must predict
smooth behaviour of the mean ¯ow as well as of the trans-
ported quantities. Otherwise, the prediction may be too sen-
sitive to free-stream values. The analysis is similar to the one
proposed by Cazalbou et al. (1994).

The analysis is performed for a thin layer (boundary layer,
jet wake, etc). A self-similar form near the boundary (y � d) is
assumed for the longitudinal velocity pro®le as

u � Uext ÿ usF 0�g�; g � y������
Cl

p
d
; �10�

where prime here denotes di�erentiation with respect to g. The
vertical velocity pro®le can be deduced with the help of the
continuity equation.

Similarly, self similar solutions are assumed for the turbu-
lent kinetic energy and its dissipation rate

k � u2
sK�g�; e � u3

s

d
E�g�: �11�

The behaviour near the turbulent region edge is studied.
Therefore, the following change of variable is used:
k � gext ÿ g and solutions are sought for as

F �g� � Fext ÿ Aka; K�g� � Bkb; E�g� � Ckc;

where A;B and C must be strictly positive and a smooth be-
haviour is obtained only when

a > 2; b > 1; c > 1 �12�

so that all quantities and their derivatives tend towards zero at
the interface.

Leading order terms in the momentum equation give the
®rst equality

2bÿ cÿ 1 � 0: �13�
The balance of the turbulent kinetic energy and dissipation
rate transport equations are chosen so that the production is
negligible compared to the advection and the di�usion. This
leads to the constraint

b < 2�aÿ 1�: �14�
The balance of the advection and di�usion terms in both
transport equations yield the following relations:

b � 1� � a� ÿ 1�rke� rkk

rke � 2rkk
; �15�

cb2 � c a�
�
ÿ 1� ÿ b

1

rek

�
� b

�
ÿ c

1

ree

�
� a

��
: �16�

The exponents a; b and c can be deduced from Eqs. (13), (15)
and (16). Because of Eq. (16) which is quadratic in b when
c 6� 0, second-order equations are obtained for each coe�-
cient. All the above equations and constraints (13)±(16) have
been obtained assuming that a; b and c are positive. Negative
values for a; b and c are not consistent with the prescribed edge
values for the velocity, the turbulent kinetic energy and its
dissipation rate. Therefore, to obtain the correct model be-
haviour, there must exist at least one positive value for a; b and
c and all positive solutions must satisfy the constraints (12) and
(14).

It has been checked that the k±e and k±u models satisfy the
constraints, while the k±x model is known not to. Smith's k±L
model has also be shown not to satisfy this constraint, which is
consistent with Prasad and Malan (1998) results.

3.6. Wake region

A way to optimize the prediction of the wake region has
also been looked for. Self-similar solutions of the form pre-
sented above (Eqs. (10) and (11)) are used. Following Coles
(1956), the velocity pro®le can be expressed as

Uext ÿ u
us

� ÿ 1

j
ln g�P

j
2 cos2 p

2
g

� �
; g � y

d
; �17�

where the wake strength P is related to boundary layer integral
thicknesses through

1�P � j
d1

d

������
2

Cf

s
� jF �1�:

Assuming self-similarity, a form for the Reynolds stress pro®le
ÿhu0v0i=u2

s�g� can be deduced from the momentum equation.
The rather complex formulation is well approximated by

ÿhu0v0i
u2

s

� 1

�
� b�

Uext

us
g

�
cos2 p

2
g

� �
;

b� � ÿ d
us

dUext
dx:

�18�

This simpler form is in good agreement with experiments, as
shown in Figs. 4 and 5. The turbulent kinetic energy pro®le can
be deduced from the Reynolds stress pro®le, using Bradshaw's
assumption ± hu0v0i � 2a1k which is in good agreement with
experiments as shown in Fig. 6. The dimensionless eddy vis-
cosity N � mt=�usd� can be deduced from Eqs. (17) and (18).
Finally, the dissipation pro®le can be deduced from the
knowledge of both the eddy viscosity and turbulent kinetic
energy.

Fig. 3. Prediction of the square root region by various turbulence

models.
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The model equations (3)±(5) are written in self-similar form
as

ÿ 2b�K ÿ 1

F1

�
� 2b�

�
gK 0

� NF 00 2ÿ E � d

dg
NK 0

rkk

�
� N

rke

KE0

E

�
; �19�

ÿ 1

F1

�
� 6b�

�
E ÿ 1

F1

�
� 2b�

�
gE0

� Ce1
NF 00 2� ÿ Ce2

E� E
K
� N a

E0E0

E

�
� b

K 0E0

K
� c

EK 0K 0

K2

�
� d

dg
N
rke

E
K

K 0
�

� N
ree

E0
�
; �20�

N � Cl
K2

E
; �21�

where F1 � F �1�.
As analytical expressions for the velocity, Reynolds stress,

turbulent kinetic energy and dissipation pro®les are available,
the model constants can be optimized to minimize the error on
the balance of Eqs. (19) and (20) for a given range (say
0:26 g6 0:8) where all the assumptions hold. Error measures
have to be prescribed, e.g. the integrals of the square of the
balance for each equation and the process has to be repeated
for several pressure gradient cases, corresponding to di�erent
values of F1 and b.

3.7. Isotropic decay

The simplest and classical constraint is the decay of iso-
tropic turbulence which yields the bounds 1:76Ce2

6 2
(Aupoix, 1987).

4. Application to model derivation

4.1. Comments about the constraints

The above physical constraints are general. Their derivation
has been restricted to the proposed model, with an eddy vis-
cosity assumption. The key problem comes from the eddy
viscosity assumption which gives, for a two-dimensional
boundary layer,

ÿhu0v0i � 2a1

�����
Pk

e

r
k:

In the boundary layer, the regions where Pk � e and where
Bradshaw's assumption is veri®ed are di�erent; the eddy

Fig. 6. Comparison of the turbulent kinetic energy pro®le deduced

from Eq. (18) and the Bradshaw's assumption with boundary layer

experiment of Sk�are and Krogstad.

Fig. 4. Comparison of Eq. (18) with the zero pressure gradient

boundary layer experiment of Smith and Smits.

Fig. 5. Comparison of Eq. (18) with the adverse pressure gradient

boundary layer experiment of Sk�are and Krogstad.
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viscosity assumption is thus not fully consistent with the
Bradshaw's assumption.

The main goal for the model is to correctly predict the mean
velocity pro®le, and thus the Reynolds stress ± hu0v0i and the
eddy viscosity but not necessarily the turbulent kinetic energy.
Hence, in order to get good predictions with an eddy viscosity
assumption, k should not strictly be the turbulent kinetic en-
ergy but just the velocity scale used to compute the eddy vis-
cosity. Thus, the self-similar form proposed for k in the wake
region should not be used. Similarly, Ak cannot be equal to
1=2a1 in the square root region.

Therefore, an eddy viscosity model can just been asked to
satisfy the isotropic turbulence decay, the slope of the loga-
rithmic region for zero or moderate pressure gradients, the
slope Au in the square root region (but not Ak) and the
behaviour at an interface. No simple analytical constraint can
be applied in the wake region, numerical optimization has to
be used.

Therefore, only ®ve constraints can be used. Table 1 sums
up which constraints are satis®ed by each classical model.

4.2. Prototype model

As pointed out above, no model satis®es all the constraints.
Slight modi®cations of an existing models in order to satisfy
the constraints have been sought for but failed. For example,
the constraints for the edge behaviour and for the invariance of
the slope of the logarithmic region are incompatible for the
k±x model.

Therefore, a prototype model has been developed. It should
not be viewed as a de®nite model as little optimization work
has been made and some a priori choices have been made to
develop it. It is just to demonstrate that the constraints really
ensure a good model behaviour.

The prototype model uses e to determine the length scale.
Although the form of the length scale Eq. (4) is generic, the use
of e as a length-scale determining variable induces some
choices to avoid numerical problems. First of all, the di�usion
term in Eq. (3) can be rewritten as

div
Cl

rkk

k3

e
grad log k

�
� Cl

rke

k3

e
grad log e

�
: �22�

As seen above, near a laminar/turbulent interface, k � kb and
e � kc with c > b > 1. Therefore, both terms behave like kb but
the term grad log e is more prone to lead to numerical sti�ness
as e tends towards zero more quickly. Moreover, in the nu-
merical method we used, this term has been treated as a source
term, while the ®rst di�usion term for k was treated implicitly.
Therefore, to avoid numerical sti�ness, rke was set to in®nity.
The same problem does not appear for the divergence term in
the length scale Eq. (4) as, here again, both terms have the
same behaviour near the interface but the grad log e term is
here treated implicitly. However, attention has to be paid to

the cross-di�usion terms in the length scale Eq. (4) which are
also treated as source terms. They can be rearranged as

Clk2 agrad log e � grad log e
�

� bgrad log k � grad log e

� cgrad log k � grad log k
�

�23�

Table 1

Constraints satis®ed by the various turbulence models

Model Logarithmic region Square root region Laminar/turbulent interface Isotropic decay

Zero pressure

gradient

Moderate pressure

gradient

k±e Tuned for Poor Not satis®ed Good Tuned for

k±u Tuned for Poor Not satis®ed Tuned for Tuned for

k±x Tuned for Fair Not satis®ed No Tuned for

k±L Tuned for Fair Not satis®ed No Tuned for

Spalart Tuned for Good Nearly satis®ed Tuned for Tuned for

Fig. 7. Validation of the prototype model behaviour in the logarithmic

region (p� � 5� 10ÿ4, Rh � 5� 105).

Fig. 8. Validation of the prototype model behaviour in the square root

region (p� � 5� 10ÿ3, Rh � 5� 105).
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so that the steepest term is the ®rst one. To avoid too much
numerical sti�ness, a has been set to zero. The other model
constants are such that all the constraints are satis®ed and that
the wake region for a zero pressure gradient boundary layer is
correctly predicted. The model has been tested in a boundary
layer code, using a one-equation model (Aupoix et al., 1993) to
treat the near-wall region.

Various tests for academic ¯ows as well as boundary layer
experiments have been conducted. Flows with constant pres-
sure gradient parameter p� have been computed. Figs. 7 and 8
show that the model indeed predicts the correct slope for the
logarithmic region as well as a square root region for strong
pressure gradients.

The model predictions (PM) for the two most severe ex-
periments with adverse pressure gradients are compared to the
best tested models in Figs. 9 and 10. Without any speci®c
tuning to any experiment, the prototype model (PM) yields
among the best predictions.

This con®rms the validity of the present approach based
upon generic constraints.

5. Conclusion

A new, quasi-general form for the length-scale transport
equation has been proposed. In order to determine the model
coe�cient, the proposed approach is to identify a set of
physical behaviours the model has to reproduce. These be-
haviours are expressed as mathematical constraints, the rele-
vance of which is tested on standard turbulence models.

The constraints are
· the logarithmic region slope, for zero and moderate pres-

sure gradients,
· the existence of a square root region for strongly decelerated

boundary layers,
· the behaviour at the edge of a turbulent region,
· the decay of isotropic turbulence.

No tested standard model satis®es all these constraints. A
prototype model has been developed which ful®lls all the
constraints and yields good prediction of adverse pressure
gradient boundary layer ¯ows without any extra ad hoc tun-
ing. This seems to validate the use of the constraints to opti-
mize model constants.

When the eddy viscosity assumption is relaxed, either using
an algebraic stress formulation or a full Reynolds stress ap-
proach, consistency with the Bradshaw's hypothesis can be
expected. Constraints for the wake region can then be used.
However, it must be pointed out that, because of the change of
the constitutive relation, the mathematical form of the con-
straints is di�erent so that the length-scale transport equation
must be di�erent.
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